
Unit 7 Structure and Union

• Structure: definition, declaration, initialization, size of structure

• Accessing member of Structure

• Array of Structure

• Nested Structure

• Union: definition, declaration, size of union

• Structure Vs. Union

Structure

• In C programming, a struct (or structure) is a collection of variables (can be of different types)

under a single name.

• Unlike an array, a structure can contain many different data types (int, float, char, etc.).

Defining Structure

To define a struct, the struct keyword is used.

Syntax

struct structureName {
 dataType member1;
 dataType member2;
 ...
};

Example

struct Person {
 char name[50];
 int citNo;
 float salary;
};

Creating struct variable

When a struct, type is declared, no storage or memory is allocated. To allocate memory of a given

structure type and work with it, we need to create variables.

Example

struct Person {
 // code
};

int main() {
 struct Person person1, person2, p[20];
 return 0;
}

Another way of creating a struct variable is:

struct Person {
 // code
} person1, person2, p[20];

Access Members of a Structure

To access members of a structure, use the dot syntax (.)

Example:

#include <stdio.h>
#include <string.h>

// create struct with person1 variable
struct Person
{
 char name[50];
 int citNo;
 float salary;
} person1;

int main()
{

 // assign value to name of person1
 strcpy(person1.name, "George Orwell");

 // assign values to other person1 variables
 person1.citNo = 1984;
 person1.salary = 2500;

 // print struct variables
 printf("Name: %s\n", person1.name);
 printf("Citizenship No.: %d\n", person1.citNo);
 printf("Salary: %.2f", person1.salary);

 return 0;
}

Example 2:

#include <stdio.h>

struct Car
{
 char brand[50];
 char model[50];
 int year;
};

int main()
{
 struct Car car1 = {"BMW", "X5", 1999};
 struct Car car2 = {"Ford", "Mustang", 1969};
 struct Car car3 = {"Toyota", "Corolla", 2011};

 printf("%s %s %d\n", car1.brand, car1.model, car1.year);
 printf("%s %s %d\n", car2.brand, car2.model, car2.year);
 printf("%s %s %d\n", car3.brand, car3.model, car3.year);

 return 0;
}

Array of Structures

As a structure in C is a user-defined data type, we can also create an array of it, same as other data types.

Syntax:

struct structure_name array_name[size_of_array];

Example:

#include <stdio.h>
#include <string.h>

struct Student
{
 char name[50];
 char section;
 int class;
};

int main()
{
 // creating an array of structures

 struct Student arr[5];

 for (int i = 0; i < 5; i++)
 {
 scanf("%s", arr[i].name);
 arr[i].section = 'A' + i;
 arr[i].class = i + 1;
 printf("name: %s section: %c class: %d\n", arr[i].name,
arr[i].section, arr[i].class);
 }

 return 0;
}

Nested structure

C provides us the feature of nesting one structure within another structure.

Example:

#include <stdio.h>
struct address
{
 char city[20];
 int pin;
 char phone[14];
};
struct employee
{
 char name[20];
 struct address add;
};
void main()
{
 struct employee emp;
 printf("Enter employee information?\n");
 scanf("%s %s %d %s", emp.name, emp.add.city, &emp.add.pin,
emp.add.phone);
 printf("Printing the employee information....\n");
 printf("name: %s\nCity: %s\nPincode: %d\nPhone: %s", emp.name,
emp.add.city, emp.add.pin, emp.add.phone);
}

Unions

• A union is a user-defined type similar to structs in C.

• The main difference between structure and union is: Structures allocate enough space to store all

their members, whereas unions can only hold one member value at a time.

Defining Union

Creating union variables

Access member of union

Size of structure vs union

#include <stdio.h>
union unionJob
{
 // defining a union
 char name[32];
 float salary;
 int workerNo;
} uJob;

struct structJob
{
 char name[32];
 float salary;
 int workerNo;
} sJob;

int main()
{
 printf("size of union = %d bytes", sizeof(uJob));
 printf("\nsize of structure = %d bytes", sizeof(sJob));
 return 0;
}

Output:

size of union = 32 bytes

size of structure = 40 bytes

In the above example it is clear that unions take less memory space compared to structures.

Structure vs Union

Feature Structures Unions

Purpose

Used to group related variables of

different types together

Used to save memory by sharing the same

memory location for different variables

Memory

Allocation

Each member has its own memory

space Members share the same memory space

Size

Calculation Sum of sizes of all members Size of the largest member

Memory

Efficiency

Less memory efficient as each member

has its own memory space

More memory efficient as members share

memory space

Initialization Individual member initialization Only one member can be initialized at a time

Feature Structures Unions

Access

Individual members can be accessed

independently Only one member can be accessed at a time

Member

Overlap Members do not overlap in memory Members can overlap in memory

Memory Usage

Uses memory for each member,

regardless of usage Uses memory only for the largest member

Type Safety Provides type safety for each member No type safety, can lead to type-related errors

Usage

Suitable when different types of data

need to be stored together

Suitable when memory efficiency is a priority

and only one member is accessed at a time

