
Unit 3

Operators and Expressions

• Operators, Operand, Operation, Expression

• Types of Operators
o Unary
o Binary
o Ternary
o Arithmetic
o Relational
o Logical
o Assignment
o Increment/Decrement
o Conditional
o Bitwise
o Size-of Operators

Operators

• An operator is a symbol that operates on a value or a variable. For example: + is an
operator to perform addition.

Operand:

• Operand is a value or variable that an operator works on.

• For example, 4+5, here, numbers 4 and 5 are operands whereas + is an operator.

Operation

The action or calculation that an operator performs on its operand(s) to produce a result.

Expression

• A combination of values, variables, operators, and function calls that produces a single
value.

• Example: 5 + 3, x > 0 && y < 10 etc.

Statement

• A statement is a line of code that performs a specific action or task

• Tasks such as declaring a variable, assigning a value to a variable, or executing a function
are statements.

• A statement typically ends with a semicolon (;) in most programming languages.

• Example:
o int x;
o x = 5;
o printf("Hello, world!");

Types of operators in C

Based on number of operands, operators are divided into 3 types.

1. Unary Operator
2. Binary Operator
3. Ternary Operator

1. Unary Operator

• Unary operators only operate on single operand.
• There are several unary operators in C programming:

a. Unary plus operator (+): indicates a positive value of the operand, but doesn't change it.
For example, +5 returns 5.

b. Unary minus operator (-): negates the operand value. For example, -5 returns -5.

c. Increment operator (++): increases the operand value by 1.

o Pre-Increment Operator: Increments the value before evaluation.
o Post-Increment Operator: Increments the value after evaluation.

Example:

int x = 5;
 int y, z;

 y = ++x; // pre-increment, x is now 6, y is 6
 z = x++; // post-increment, x is now 7, z is 6

• Decrement operator (--): decreases the operand value by 1. For example, --x on x=5
returns 4.

o Pre-Decrement Operator: Decrements the value before evaluation.
o Post-Decrement Operator: Decrements the value after evaluation.

int x = 5;
int y, z;

y = --x; // pre-decrement, x is now 4, y is 4
z = x--; // post-decrement, x is now 3, z is 4

2. Binary Operator

• Binary operator operates on two operators.
• There are several types of binary operators:

a. Arithmetic Operator

Arithmetic operators are used to perform mathematical operations on numeric values.

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division remainder x % y

Example

#include <stdio.h>

int main()
{
 int x = 5;
 int y = 3;

 int sum = x + y;
 int difference = x - y;
 int product = x * y;

 int quotient = x / y;
 int remainder = x % y;

 printf("Sum: %d\n", sum);
 printf("Difference: %d\n", difference);
 printf("Product: %d\n", product);
 printf("Quotient: %d\n", quotient);
 printf("Remainder: %d\n", remainder);

 return 0;
}

b. Logical Operator
• Logical operators are used to check logical conditions.

• They return the 1 when the result is true and 0 when the result is false.

Operator Description Example (a and b, where a = 1 and b = 0)

&& Logical AND a && b, returns 0

|| Logical OR a || b, returns 1

! Logical NOT !a, returns 0

• With AND operator, only if both operands are true, the result is true.

• With the OR operator, if a single operand is true, then the result will be true.

• The NOT operator changes true to false, and false to true.

Example

#include <stdio.h>

int main()
{

 int a = 1, b = 0, result;

 // And
 result = (a && b);
 printf("a && b = %d \n", result);

 // Or
 result = (a || b);

 printf("a || b = %d \n", result);

 // Not
 result = !a;
 printf("!a = %d \n", result);

 return 0;
}

c. Relational/Comparison Operator
• Relational/Comparison operators are used to compare two values (or variables).
• If the relation is true, it returns 1; if the relation is false, it returns value 0.

Operator
Meaning of

Operator
Example

== Equal to 5 == 3 is evaluated to 0

> Greater than 5 > 3 is evaluated to 1

< Less than 5 < 3 is evaluated to 0

!= Not equal to 5 != 3 is evaluated to 1

>=
Greater than or

equal to
5 >= 3 is evaluated to 1

<=
Less than or

equal to
5 <= 3 is evaluated to 0

Example

#include <stdio.h>

int main()
{

 int a = 10, b = 20, result;

 // Equal
 result = (a == b);
 printf("(a == b) = %d \n", result);

 // less than
 result = (a < b);
 printf("(a < b) = %d \n", result);

 // greater than
 result = (a > b);
 printf("(a > b) = %d \n", result);

 // less than equal to
 result = (a <= b);
 printf("(a <= b) = %d \n", result);

 return 0;
}

d. Assignment Operator
• The assignment operators are used to assign value to a variable.

• For example: num = 6 will assign the value 6 to the variable num.

Operator Example Same as

= a = b a = b

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

Example:

#include <stdio.h>

int main()
{

 int a = 10;

 // Assign
 int result = a;
 printf("result = %d \n", result);

 // += operator
 result += a;
 printf("result = %d \n", result);

 // -= operator
 result -= a;
 printf("result = %d \n", result);

 // *= operator
 result *= a;
 printf("result = %d \n", result);

 return 0;
}

e. Bitwise Operator
• Bitwise operators perform manipulations of data at the bit level.

• These operators also perform the shifting of bits from right to left. Bitwise operators are

not applied to float or double, long double, void, etc.

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR (XOR)

~ One's complement (NOT)

>> Shift right

<< Shift left

Example:

#include <stdio.h>

int main()
{

 int a = 0001000, b = 2, result;

 // <<
 result = a << b;
 printf("a << b = %d \n", result);

 // >>
 result = a >> b;
 printf("a >> b = %d \n", result);

 return 0;
}

3. Ternary Operator

• Ternary operator operates on 3 values or variables.
• It is also known as conditional operator.

Syntax: (Expression1)? Expression2 : Expression3;

• If (expression 1) returns true then the (expression 2) is executed.

• If (expression 1) returns false then the expression on the right side of : i.e (expression 3)
is executed.

Example

#include <stdio.h>

int main()
{
 int x = 10;
 int y = 5;
 int max = (x > y) ? x : y;

 printf("The maximum value is %d\n", max);

 return 0;
}

sizeof() operator

• In C, the sizeof operator is used to determine the size of a variable or data type in bytes.
• Syntax: sizeof(variable)

Example:

#include <stdio.h>

int main()
{
 int num;

 float f;
 char c;
 double d;

 printf("The size of an int is %lu bytes\n", sizeof(num));
 printf("The size of a float is %lu bytes\n", sizeof(f));
 printf("The size of a char is %lu bytes\n", sizeof(c));
 printf("The size of a double is %lu bytes\n", sizeof(d));

 return 0;
}

