
Unit 2

Introduction to C

• Overview and History of C

• Features, Advantages and Disadvantages of C

• Structure of C Program, Compiling Process

• Character set used in C, Data types, Variables. C Tokens (Keywords, Identifier, Constants,
Operators), Header files, Library function

• Preprocessor Directives, Escape Sequence, Comments

• Input Output Operation
o Formatted input/output function [printf(), scanf()]
o Unformatted input/output function [getchar(), putchar(), gets(), puts(), getc(),

putc()]

Introduction to C

• C is a general-purpose, procedural programming language.

• It was developed by Dennis Ritchie at Bell Labs in 1972 for UNIX OS.

• C is known for its efficiency, portability, and low-level access to system resources.

• C is widely used for developing operating systems, device drivers, and other low-level
applications.

• C has influenced many other programming languages, including C++, Java, and Python.

• It is still widely used today by programmers around the world.

Features of C

Simple: C is a simple language in the sense that it provides a structured approach (to break the problem

into parts), the rich set of library functions, data types, etc.

• Structured programming language: We can break the program into parts using functions. So, it is

easy to understand and modify. Functions also provide code reusability.

• Procedural language: C is a procedural language, which means it follows a step-by-step approach

to solve a problem.

• High performance: C is a highly efficient language, making it a popular choice for developing high-

performance applications.

• Portability: C code can be easily ported to different platforms, making it a highly portable

language.

• Support for system programming: C was originally designed for system programming, and it is still

widely used for developing operating systems, device drivers, and other low-level applications.

• Influence on other languages: C has influenced many other programming languages, including

C++, Java, and Python.

• Mid-level programming language: Although, C is intended to do low-level programming. It is used

to develop system applications such as kernel, driver, etc. It also supports the features of a high-

level language. That is why it is known as mid-level language.

• Rich Library: C provides a lot of inbuilt functions that make the development fast.

• Extensible: C language is extensible because it can easily adopt new features.

Application of C

Sure, here are simplified sentences for each of the applications of C programming language:

• System programming: C is used for developing operating systems, device drivers, and

other low-level applications.

• Embedded systems: C is used for developing microcontrollers and other small electronic

devices.

• Game development: C is used for creating high-performance games with low-level access

to hardware.

• Scientific computing: C is used for handling large amounts of data in scientific research.

• Database systems: C is used for managing data and interacting with hardware at a low

level.

• Graphics and multimedia: C is used for processing images, videos, and other multimedia.

• Networking: C is used for developing network protocols and communication software.

• Compiler development: C is used for developing compilers and other software tools.

• Web development: C is used for developing web servers and other web-related

applications.

• Artificial intelligence and machine learning: C is used for developing efficient algorithms

in AI and machine learning.

Advantages:

1. Efficiency: C is a fast language that can run code quickly and use system resources well.

2. Portability: C code can be easily moved to different platforms, so it's a good language for

different devices.

3. Low-level programming: With C, you can control hardware better by accessing system

resources at a low level.

4. Flexibility: C has many ways to work with different types of data, so it's flexible for

different kinds of programs.

5. Large community: Lots of people use C and share code and knowledge with each other,

so it has a big community of programmers.

Disadvantages:

1. C can be hard to learn, especially for beginners.

2. C programming can be hard because it lacks modern concepts like object-oriented

programming.

3. C doesn't have all the modern features of newer programming languages, like automatic

memory management or built-in support for multi-threading.

4. It is not popular choice to create modern apps, games and web apps.

Structure of C program

Section Description

Documentation
• Consists of the description of the program, programmer's name, and creation

date.

• These are generally written in the form of comments.

Link
• All header files are included in this section which contains different functions from

the libraries.

• A copy of these header files is inserted into code before compilation.

Definition
• Includes preprocessor directive, which contains symbolic constants.

E.g.: #define allows us to use constants in our code.

Section Description

• It replaces all the constants with its value in the code.

Global
Declaration

• Includes declaration of global variables, function declarations, static global
variables, and functions.

main() Function
• For every C program, the execution starts from the main() function.

• It is mandatory to include a main() function in every C program.

Subprograms
• Includes all user-defined functions (functions the user provides).

• These are called in the main() function.

Examples of C program

Program 1: A C program to print hello world.

#include <stdio.h>

int main()
{
 printf("Hello world! ");
 return 0;
}

Program 2: A C program to add two numbers.

#include <stdio.h>

int main()
{
 int num1, num2, sum;

 printf("Enter two numbers: ");
 scanf("%d %d", &num1, &num2);

 sum = num1 + num2;

 printf("The sum of is: %d", sum);

 return 0;
}
Program 3: A C program to calculate Simple Interest.

#include <stdio.h>

int main()
{
 float principle, rate, time, interest;

 printf("Enter principle, rate, and time: ");
 scanf("%f %f %f", &principle, &rate, &time);

 interest = (principle * rate * time) / 100;

 printf("Simple interest = %f\n", interest);

 return 0;
}

Program 4: A C program to convert Fahrenheit to Celsius.

#include <stdio.h>

int main()
{
 float fahrenheit, celsius;

 printf("Enter temperature in Fahrenheit: ");
 scanf("%f", &fahrenheit);

 celsius = (fahrenheit - 32) * 5 / 9;

 printf("%.2f Fahrenheit is equal to %.2f Celsius\n", fahrenheit, celsius);

 return 0;
}

Compiling process in C

The compilation is a process of converting the source code into object code. It is done with the
help of the compiler.

The compilation process in C involves following stages, including:

1. Preprocessing: In this stage, the preprocessor examines the source code and performs

tasks such as including header files, replacing macros with their definitions, and removing

comments.

2. Compilation: In this stage, the compiler takes the preprocessed source code and converts

it into assembly code or machine code.

3. Assembly: In this stage, the assembler converts the assembly code into object code,

which contains machine instructions and data.

4. Linking: In this stage, the linker combines the object code with other necessary object

code and libraries to create an executable file.

Compilation steps

• Firstly, the input file, i.e., hello.c, is passed to the preprocessor, and the preprocessor

converts the source code into expanded source code.

• The extension of the expanded source code would be hello.i.

• The expanded source code is passed to the compiler, and the compiler converts this

expanded source code into assembly code.

• The extension of the assembly code would be hello.s.

• This assembly code is then sent to the assembler, which converts the assembly code into

object code.

• After the creation of an object code, the linker creates the executable file.

• The loader will then load the executable file for the execution.

Character set in C

The character set used in C are:

Symbol Meaning

~ Tilde

! # $ Exclamation mark, Number sign, Dollar sign

% ^ & Percent sign, Caret, Ampersand

* () Asterisk, Lest parenthesis, Right parenthesis

Symbol Meaning

_ + , Underscore, Plus sign, Comma

. / | Period, Slash, Vertical bar

\ ` - Backslash, Apostrophe, Minus sign

= < > Equal to sign, Opening angle bracket, Closing angle
bracket

? { } Question mark, Left brace, Right brace

[] : Left bracket, Right bracket, Colon

" ; Quotation mark, Semicolon

Data types in C

• A data type specifies the type of data.

• In programming, a data type is a classification of data based on the type of value it
represents.

• The C programming has 5 primary data types:
i. Character (char)
ii. Integer (int)
iii. Floating-point (float)
iv. Double (double)
v. Void (void)

1. Character

• We use the keyword char for character data type.

• It is used to store single bit characters and occupies 1 byte of memory.

• We can store alphabets from A-Z(and a-z) and 0-9 digits using char.

• For example,
char a = 'a';
char b = 'A';
char c = '0';
char d = 0; //error

2. Integer

• We use the keyword int for integer data type.

• The int data type is used to store non-fractional numbers which includes positive,
negative and zero values.

• The range of int is -2,147,483,648 to 2,147,483,647.

• It occupies 2 or 4 bytes of memory, depending on the system.

• For example,
int a = 5550;
int b = -90,
int c = 0;
int d = -0.5; //invalid

3. Floating-point

• We use the keyword float for floating-point data type.

• float is used to store decimal numbers.

• It occupies 4 bytes of memory and ranges from 1e-37 to 1e+37. For example,
float a = 0.05;
float b = -0.005.
float c = 1; // it will become c = 1.000000 because of type-casting

4. Double

• We use the keyword double for double data type.

• double is used to store decimal numbers.

• It occupies 8 bytes of memory and ranges from 1e-37 to 1e+37.

• Example:
double a = 10.09;
double b = -67.9;

5. Void

• This means no value.

• This data type is mostly used when we define functions.

• The void data type is used when a function does not return anything.

• It occupies 0 bytes of memory.

• We use the void keyword for void data type.

• Example:
void function() {
 //your code goes here
}

Example program: A C program to demonstrate data types in C.

#include <stdio.h>

int main()
{
 int num = 10;
 char letter = 'A';
 float fnum = 3.14;
 double dnum = 2.718;
 void *ptr;

 printf("Integer: %d\n", num);
 printf("Character: %c\n", letter);
 printf("Float: %f\n", fnum);
 printf("Double: %lf\n", dnum);
 printf("Void Pointer: %p\n", ptr);

 return 0;
}

Variable in C

• Variables are containers for storing data values, like numbers and characters.

• A variable is a name of the memory location.

• The value of a variable can be changed and it can be used many times.

Variable declaration

• To declare a variable in C, you specify the data type followed by the variable name, like
this:

• Syntax: data_type variable_name;

• Example: int x;

Variable initialization

• Variable can be initialized with following syntax:

• Variable_name = value;

• Example: x = 10;

**We can declare and initialize variable at the same time:

Example: int num = 10;

Rules for naming variables:

• The name must begin with a letter (upper or lowercase) or underscore character _.

• The name can only contain letters (upper or lowercase), digits, and underscore
characters _.

• The name cannot be a keyword (reserved word) in the C language.

• Names are case sensitive (myVar and myvar are different variables)

• Names cannot contain whitespaces or special characters like !, #, %, etc.

C Tokens

• In C programming, a token is the smallest individual unit in a program that has a meaning
or a purpose.

• The following are the different types of tokens in C programming:

1. Keywords

• These are predefined or reserved words that have a specific meaning in the
language, such as int, float, if, else, while, etc.

• They cannot be used as the variable names.

• C language supports 32 keywords given below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers

2. Identifiers

• These are names given to variables, functions, and user-defined types.

• An identifier can consist of letters, digits, and underscore (_) and must begin with
a letter or an underscore.

• The length of the identifiers should not be more than 31 characters.

• Example:
o int age;

o float salary;

o void printMessage();

o int numbers[10];

3. Constants

• These are fixed values that do not change during program execution.

• Here are two of the ways in which we can declare a constant:

• By using a #define pre-processor

• By using a const keyword

• Here is a list of the types of constants that we use in the C language:

Type of Constant Example

Floating-point
constant

25.7, 87.4, 13.9, etc.

Integer constant 20, 41, 94, etc.

Hexadecimal constant 0x5x, 0x3y, 0x8z, etc.

Octal constant 033, 099, 077, 011, etc.

String constant “c++”, “.net”, “java”, etc.

Character constant ‘p’, ‘q’, ‘r’, etc.

4. String:

• Strings in C are always represented as an array of characters having null character '\0' at
the end of the string.

• Strings in C are enclosed within double quotes, while characters are enclosed within
single characters.

• The size of a string is a number of characters that the string contains.

• Now, we describe the strings in different ways:
o char a[10] = "javatpoint"; // The compiler allocates the 10 bytes to the 'a' array.
o char a[] = "javatpoint"; // The compiler allocates the memory at the run time.
o char a[10] = {'j','a','v','a','t','p','o','i','n','t','\0'}; // String is represented in the form

of characters.

https://www.javatpoint.com/c-strings

5. Operators

• An operator is a symbol that tells the compiler to perform specific mathematical or
logical functions such as +, -, *, /, %, &&, ||, etc.

6. Special symbols

• We also use some of the special characters in the C language, and all of them hold a
special meaning that we cannot use for any other purpose.

i. () parenthesis is used in functions.
ii. [] Square brackets are used in arrays.
iii. (,) Commas separate statements, functions and variables.
iv. { } Curly braces enclose code blocks or loops.
v. (*) Asterisk represents pointers and multiplication.

vi. (#) Hash/preprocessor – We use it for the preprocessor directive.
vii. (.) Period is used to access a member of a union or a structure.
viii. (~) Tilde is used as destructor to free memory.

Header files in C

• A header file is a file with extension .h which contains C function declarations and macro

definitions to be shared between several source files.
• A header file is included in a C program using the preprocessor directive #include.

• There are two types of header files in C programming: system header files and user-

defined header files.

• System Header Files:

o System header files are enclosed in angle brackets (<>) when included in a

program.

o Examples of system header files include stdio.h, stdlib.h, string.h, math.h, etc.

• User-Defined Header Files:

o User-defined header files are enclosed in double quotes (" ") when included in a

program.

o Examples of user-defined header files include myheader.h, utils.h, etc.

Some of system header files are:

Sr.No. Header Files & Description

1 stdio.h Input/Output functions

2 conio.h Console Input/Output functions

3 stdlib.h General utility functions

4 math.h Mathematics functions

5 string.h String functions

6 ctype.h Character handling functions

7 time.h Date and time functions

Library function

• In C programming, library functions are pre-written functions that are provided in

libraries.

• Each function here performs a specific operation. We can use this library functions to get

the pre-defined output.

• These are grouped together and placed in a common location called library.

• All C standard library functions are declared by using many header files.

• C library functions are grouped into several categories, including:

• Input/Output Functions: printf, scanf, fopen, fclose, fread, fwrite, fgets, fputs, and more.

• String Manipulation Functions: strcpy, strcat, strcmp, strlen, strchr, strstr, and more.

• Mathematical Functions: sin, cos, tan, exp, log, sqrt, pow, and more.

Preprocessor Directives

• Preprocessor directives are the statements that begins with a # symbol.

• These statements are processed by the preprocessor before the actual compilation of

the program.

• The C preprocessor is a micro-processor that is used by compiler to transform your code

before compilation.

• Here are some examples of commonly used preprocessor directives in C:

• #include: This directive is used to include header files in a C program.

• #define: This directive is used to define constants in a C program. For example, #define PI

3.1415926 defines the constant PI with the value 3.1415926.

• #error: This directive is used to generate an error message during compilation. For

example, #error "Invalid input" generates an error message with the text "Invalid input".

Escape Sequence

• Character combinations consisting of a backslash (\) followed by a letter or by a
combination of digits are called "escape sequences."

• Here are some common escape sequences in C:

1. \n : newline

2. \t : horizontal tab

3. \\ : backslash

4. \' : single quote

5. \" : double quote

6. \r : carriage return

7. \b : backspace

8. \f : form feed

Here's an example program that demonstrates the use of escape sequences:

#include <stdio.h>
int main()
{
 printf("Hello,\tWorld!\n");
 // Output: Hello, World!

 printf("My name is \"John\".\n");
 // Output: My name is "John".

 printf("This is a backslash: \\ \n");
 // Output: This is a backslash: \

 return 0;
}

Comments

• In C programming, comments are used to add explanations or documentation to the

source code.

• Comments are ignored by the compiler and have no effect on the execution of the

program.

• There are two types of comments in C:

Single-line comments: These comments start with // and continue until the end of the line.

For example:

// This is a single-line comment

int x = 10; // This is another single-line comment

Multi-line comments: These comments start with /* and end with */.

• For example:

/* This is a multi-line comment
 that can span multiple lines
 and include multiple statements. */

int x = 10; /* This is another multi-line

